Search for new physics with t leptons and b jets

Keti Kaadze 8 January, 2013

The Standard Model complete or not?

G fitter sm

- As of today, the standard model is the best attempt to describe interactions of elementary particles
 - Successfully confirmed by the experimental data
 - A new boson is discovered with mass ~125 GeV whose properties so far are "the SM-like"
- The SM is not the ultimate theory
 - Naturalness problem fine tuning is needed
 - Hierarchy problem why $M_{EW}/M_{plank} \sim 10^{-17}$
 - What is Dark Matter?
 - Number of generations
 - Are there extra dimensions of space? etc..

Why the third generation

- The Higgs couples to mass, thus fermion couplings are the most accessible via decays to τ leptons and b quarks
- Higgs boson(s) from minimal supersymmetric models (MSSM) have even more enhanced couplings to τ leptons and b quarks
- If SUSY is "natural", light 3rd
 generation squarks can be
 discovered at the LHC in final states with particles from the third family of the SM

Why the third generation

- Physics with third generation is also sensitive to other extensions of the SM
 - Models with suppressed couplings to light fermions: discovery can be made only with 3rd generation
 - Mixing between 3rd and 4th generations expected to be large: enhanced discovery potential
 - Symmetry between leptons and quarks suggest extra scalar (vector) bosons (leptoquarks): recent theoretical studies favor 3rd generation

In this presentation

- Physics with third generation is challenging but exciting and could be sensitive to a number of SM extensions
- In this presentation:
 - Search for MSSM Higgs boson decaying to pair of τ leptons
 - Search for pair production of third-generation leptoquarks and top squarks decaying to pair of τ lepton and b quark

CMS Detector

Luminosity

• LHC performs incredibly well

CMS Integrated Luminosity, pp

CMS Integrated Luminosity Per Day, pp, 2012, $\sqrt{s}=8$ TeV

- CMS detector operates remarkably well
 - Data-taking efficiency ~95%
 - More than 97% of channels are operational

Final state objects

- Jets originated from hadronization of b quarks – b jets
- Missing transverse energy
- τ leptons

Light leptons or hadrons from τ

Decay Mode	Resonance	$Mass(MeV/c^2)$	Branching Fraction (%)
$\tau^- \to e^- \bar{\nu}_e \nu_{\tau}$			17.8
$ au^- o \mu^- \bar{\nu}_\mu \nu_ au$			17.4
$\tau^- \to h^- \nu_{\tau}$			11.6
$ au^- o h^- \pi^0 u_ au$	$\rho(770)$	775	25.9
$ au^- ightarrow h^- \pi^0 \pi^0 u_ au$	$a_1(1260)$	1230	9.5
$ au^- o h^- h^- h^+ u_ au$	$a_1(1260)$	1230	9.8
$ au^- ightarrow h^- h^- h^+ \pi^0 u_ au$			4.8
Other hadronic decays			3.2

Particle Flow (PF)

- Algorithm to reconstruct all stable particles
 - Charged and neutral hadrons
 - Photons, electrons, muons

- Composite objects Jets, τ leptons, missing transverse energy
- → PF is crucial for reconstruction of different physics objects at CMS

Jets and MET

• Jet and missing E_T resolution are significantly improved with PF

Total Corrected Calo-Jets

O.45

O.45

O.35

O.25

O.25

O.15

O.16

O.15

O.17

O.18

O.19

O.1

 10^{2}

- More improvement of MET resolution
 - Using multivariate approach
 - Improvement of the resolution as a function of N_{PU}

p_{_} [GeV/c]

 \rightarrow Crucial for Higgs $\rightarrow \tau \tau$ analysis

b jet identification

• Important to identify jets from hadronization of heavy flavor quarks

Large lifetime and corresponding decay length

• High decay multiplicity and high p_T of decay products

- track impact parameter significance
- secondary vertex
- Vertex mass
- Flight distance significance, etc..

- Using multijet and ttbar events
- Different measurements are combined based on weighted mean

Operation points with mistag rate @ 10%, 1%, 0.1%

b jet identification

- Currently available taggers are optimized for b jets from top quark decays
 - More improvements for identification b jets at high p_T
 - Study characteristics of B-hadron decays: momentum and spatial separation of tracks from B hadron

Mistag rate = 1%		
	ϵ_{TCHE}	ϵ_{TCHP}
Default	32%	40%
Modified	41%	44%
Improvement	28%	10%
Mistag rate = 0.1%		
	ϵ_{TCHE}	ϵ_{TCHP}
Default	0.9%	5%
Modified	2.5%	14%
Improvement	178%	133%

Hadronic τ (τ_h)

- \sim 65% of τ leptons decay hadronically (τ_h)
- Important to be able to select tau candidates at trigger level

Decay Mode	Resonance	Mass, MeV/c ²	Branching ratio, %
$ au ightarrow h^- u_{ au}$			11.6%
$ au ightarrow h^- \pi^0 u_ au$	ρ	770	26.0%
$ au ightarrow h^- \pi^0 \pi^0 u_ au$	a1	1200	10.8%
$ au ightarrow h^- h^+ h^- u_ au$	a1	1200	9.8%
$ au ightarrow h^- h^+ h^- \pi^0 u_ au$			4.6%
Total			63.1%
Other hadronic decays			1.7%

- Narrow jet with at least one energetic track close to jet axis
- Veto on tracks in annulus around the leading track
- To allow low p_T threshold hadronic τ together with another object (electrons, muons, τ_h , or missing transverse energy) is required

Identification of τ_h

- Using Hadrons Plus Strips algorithm
 - Reconstruct intermediate decay products
 - τ_h are reconstructed in decay modes of 1prong+0,1,2 π^0 , 3 prongs

- Vertex of the leading track is assigned to τ_h
- Using isolation to discriminate against jets
 - Combined charged and neutral PF isolation within cone of 0.5
 - Multivariate isolation
 - Contribution from pileup is subtracted

Identification of τ_h

• Efficiency is measured in data and simulation

using $Z \rightarrow \tau \tau$ in $\tau_h \mu$ decay mode

• Uncertainty on τ_h ID is 7-8%

 Misidentification rate is measured in multi-jet data events

Identification of τ_h

- Discrimination against light leptons:
 - Inverted electron isolation requirement or MVA approach is used to reject electrons misidentified as τ_h
 - τ_h leading track should neither match to segments in muon system nor be reconstructed as loose muon to reject muons misidentified as τ_h

Using Z→11 events

Electron fake rate is ranging 1-15% depending on working point and pseudorapidity

Muon fake rate is ∼0.25%

Identification of light leptons

- Electrons are identified with cut based or multivariate approach
- Muons are identified using cut based approach

Electrons

- Match of track to cluster
- Track quality
- Shower shape
- Isolation
- Conversion rejection

Muons

- Global track
- Sufficient number of pixel hits and hits in muons stations

Search for MSSM Φ→ττ

*Phys. Lett. B 713 (2012) 68 – 7 TeV results*http://cds.cern.ch/record/1493521?ln=en -- 7&8 TeV results

Higgs in MSSM

- Two Higgs doublets in MSSM
 - Five physical states: h, H, A, H[±]
 - Two free parameters at tree level: $tan\beta$ and m_A
 - For large tanβ branching fraction to τ leptons and b quarks is enhanced
- Two production mechanisms
 - For large $tan\beta$ either $H\approx A$ or $h\approx A$
 - Contribution from all three states is taken into account
- Results are interpreted in mh-max scenario $m_h \le m_7 |\cos 2\beta|$
 - Contribution from top (stop) loops yield upper bound on h at ~135 GeV

$$M_{susy} = 1TeV$$

$$X_t = 2TeV$$

$$M_2 = 200 GeV$$

$$\mu = 200 GeV$$

$$M_3 = 800 GeV$$

Analysis strategy

- Search is performed in different final states of di-τ decays
 - $e+\tau$, $\mu+\tau$, $e+\mu$, and $\mu+\mu$
- To maximize the sensitivity to different productions of Higgs, the events are categorized according to number of b jets

No b jet

• At least one b jet

- Topological selection of di-τ signal-like events to reject major backgrounds
 - DY+jets, W+jets, ttbar, QCD
- Statistical analysis with di-τ mass spectra

Tau pair mass reconstruction

- Uses likelihood method
 - Kinematics of tau hadronic decay products
 - Missing transverse energy and its resolution
 - →Estimates true di-τ mass per event
 - → Resolution is 15-20%

Irreducible

 $Z \rightarrow \tau \tau$

Irreducible Z→ττ: Using embedded sample

- Z→µµ data events
- Muon is replaced with simulated tau of the same kinematics

Z→ee/μμ: Using MC simulation corrected by jet →τ and e/μ → tau fake rate

ttbar: Using MC simulation. Normalization is checked in eµ events

W+jets:

- Extrapolate from high m_T to low m_T region
- Mass spectrum is obtained from the simulation diboson, single top:
 Estimated from the simulation

Mass distribution in b-tag category is obtained with relaxed b-tag requirement

QCD: Estimated fully from data

- same-sign/opposite-sign ratio in anti-isolated data events
- Mass distribution is obtained from SS events with antiisolated muons

Btag category

$$N_{QCD} = \frac{N_{anti-iso}^{OS}}{N_{anti-iso}^{SS}} (N_{iso}^{SS,data} - N_{iso}^{SS,MC})$$

SS anti-isolated data events are dominated with multijet events in both no-bjet and bjet categories

Systematic uncertainties

Source	actual value	No-BTag	BTag
Luminosity (Signal & VV)	2(4)%	2(4)%	2(4)%
Muon Id & Trigger	2%	2(4)%	2(4)%
Electron Id & Trigger	2%	2%	2%
Tau Id & Trigger	8%	8%	8%
JES	2.5-5%	1%	5-10%
b-tagging efficiency / jet	10%	2%	5-10%
mistag rate / jet	30%	2%	2%
TTbar Norm.	10-20%	10%	15-20%
EWK Norm.	10-30%	10-30%	10-30%
$Z \rightarrow \tau \tau$ Norm.	3%	3%	5%
QCD (Fakes) Norm.	10-20%	10%	20%
Norm. Z: lepton fakes tau	20-30%	20-30%	20-30%
Norm. Z: jet fakes tau	20%	20%	20%
Electron energy scale	Electron energy scale 1.5(2.5)% shape altering unc		ltering unc.
Tau energy scale	3%	shape a	Itering unc.

theory uncertainty	value
μ_{r} / μ_{f} ($bb\phi$)	5 – 25 %
μ_{r} / μ_{f} ($gg{ ightarrow}\phi$)	8 – 15 %
PDF + $\alpha_{\rm S}$	2 – 10%
UE & PS	4%

Mass spectra

• Full di-τ mass in two channels and two categories

$$\mu + \tau$$

Mass spectra

• Full di-τ mass in two channels and two categories

$$e + \tau$$

Results

- No evidence of $\Phi \rightarrow \tau \tau$ was found
 - Combining four channes
 e+τ, μ+τ, e+μ, and μ+μ
 - Limits are set within mh-max scenario on tanβ vs. m_A plane

Search for third-generation leptoquarks and top squarks

http://arxiv.org/abs/1210.5629 -- 7 TeV results accepted by PRL

Motivation

- Symmetries between leptons and quarks motivate boson fields mediating lepton-quark interaction
 - Suggested by GUT, composite, Technicolor, top-SU(5) models
- New scalar or vector bosons, leptoquarks, are predicted
 - Fractional electric charge and non-zero lepton and baryon numbers
 - Decay to the lepton and quark from the same generation with model-dependent branching fraction
- Dominant production of pair of LQ is via QCD interactions
 - Cross section depends only on mass of LQ
- Pair production of third generation scalar LQ are studied
 - Signature with two τ leptons and two b jets: $e\tau_h$ +2bjets and $\mu\tau_h$ +2bjets

31

Motivation

- Symmetries between leptons and quarks motivate boson fields mediating lepton-quark interaction
 - In SUSY R-parity violating models mediator is top squark
 - For heavy gluino scenario stop and LQ pair production cross sections are very similar

$$R_p = (-1)^{3B+L+2S}$$

- R-parity conservation: B and L number conservation, DM candidate
- R-parity violation: LPS decays

superparenter
$$W = \frac{1}{2} \lambda_{ijk} L_i L_j E_k^c + \lambda'_{ijk} L_i Q_j D_k^c + \frac{1}{2} \lambda''_{ijk} U_i^c D_j^c D_k^c$$

- In case of lepton-number violating coupling λ'_{333} stop decays to τ lepton and b quark
 - The same final state: $e\tau_h + 2$ bjets and $\mu\tau_h + 2$ bjets

Sensitive observables

- To improve signal sensitivity
 - Invariant mass of τ_h and b jet

$$M = \sqrt{(E_{\tau_h} + E_b)^2 - (\vec{p}_{\tau_h} + \vec{p}_b)^2}$$

• Use S_T distribution to check excess over the SM background prediction

$$S_T = p_T(l) + p_T(\tau_h) + p_T(bjet1) + p_T(bjet2)$$

- Select events with light high- p_T lepton, τ , and two b jets
- Backgrounds
 - ttbar production major bkg.
 - Control shape and normalization 10² in sample with low $M(\tau_h, b)$ 10
 - Background due to false τ_h W/Z+jets, QCD (small)
 - Estimated using fake rate method
 - $Z(\tau\tau/ee/\mu\mu)$ +jets, when τ_h is genuine or misidentified from lepton
 - Estimated from MC simulation
 - Diboson processes estimated from MC
 - 30% uncertainty due to precision of VV cross section measurement

ttbar background

• ttbar normalization and shape is checked in sample rejected by $M(\tau_h,b)$ cut

 $\mu \tau_h bb$ channel

process	yield
tŧ	$270 \pm 7.4 \pm 29.7$
W+jets/Z+jets	$15.3 \pm 0.9 \pm 3.8$
$Z \rightarrow \tau^+ \tau^- / \ell^+ \ell^-$	$7.5 \pm 1.8 \pm 0.5$
EWK	$0.43 \pm 0.08 \pm 0.13$
Total Bkg.	$293 \pm 7.6 \pm 29.9$
Data	279
Signal 350	7.25 ± 0.63

- Good agreement on normalization and S_T shape
 - Yields larger uncertainty (13%/17%) than one from CMS measurement on $\mu \tau_h bb/e \tau_h bb$ channels

W/Z+ jets background

• Measure jet $\rightarrow \tau_h$ misidentification rate

In MC

 $fr = 2.22\% \pm 0.5\%$ production

Use same-sign lepton+non-iso. τ_h events from W+1jet production

In data

$$fr = 2.44\% \pm 0.5\%$$

• Select events with anti-isolated τ_h ($N_{anti-iso}$)

from simulation		
W + jets	93±17	
Z + jets	97 \pm 7 (only fake τ from MCTruth)	
total bkg.	190±24 (stat.)	
from fake rate method		
total bkg.	161±3 (stat.)±30 (syst.)	

• Use $N_{fake} = \frac{fr}{1 - fr} N_{anti-iso}$ to obtain the background yield

$M(\tau_h,b)$ distribution

- $M(\tau_h,b)$ before applying cut
 - Both channels combined

Final distribution and yields

• S_T distribution after final selection $M(\tau_h, b) > 170$ GeV

	$\mu + \tau_{\rm h} b \overline{b}$ channel	$e + \tau_h b \overline{b}$ channel
tŧ	$38.1 \pm 3.4 \pm 4.9$	$10.9 \pm 1.8 \pm 1.4$
W+jets/Z+jets	$11.6 \pm 0.1 \pm 2.6$	$8.4\pm0.1\pm1.8$
$Z(\tau\tau/ll)$	$5.0\pm1.6\pm2.1$	$2.1\pm1.5\pm0.9$
Diboson	$0.5\pm0.1\pm0.2$	$0.3\pm0.1\pm0.1$
Total Background	$55.2 \pm 5.2 \pm 8.4$	$21.8 \pm 3.5 \pm 3.6$
Data	46	25
Signal (450GeV)	$13.2 \pm 0.3 \pm 0.9$	$8.4\pm0.2\pm0.6$

Source	Value
Tau ID	6 %
b mistag rate	10%
ttbar norm.	17% / 13%
W/Z+jets	30%
Z(11)+jets	70% / 30%
JER/τ ER	10%

Uncertainties on signal modeling

	Source	Value
1	FSR/ISR	4%
	PDF unc. on σ	10-30%
	PDF unc. on acceptance	1-3%

Stop vs LQ

- Cross sections agree within couple of percent for heavy gluino scenario
 - Dependence on tanβ and stop mixing angle is small
- Branching fraction is strongly dependent on various parameters: SU(2) gaugino mass M₂, Higgsino mixing parameter μ, tanβ, stop mixing angle etc.

Results are interpreted in heavy gluino mass limit, assuming:

- heavy or light μ and M₂
- $tan\beta \sim 40$
- Stop mixing angle ~0

Vector LQ vs scalar LQ

- Kinematics and decay angles from vector are expected to differ from those of scalar LQ
- The compare VLQ and SLQ:
 Models from arXiv:0502067
 CalcHEP http://hepmdb.soton.ac.uk/
- No preferred direction of decay particles for SLQ
- VLQ decay products tend to be harder

- Difference in p_T /eta distributions of final state objects is < 1% Difference in S_T >800 GeV spectrum is ~2%
- → Results are interpreted for vector LQ scenario

Results

• Two channels are combined taking into account correlation between systematic uncertainties

Assuming Br(LQ $\rightarrow \tau b$)=100%, scalar leptoquakrs with mass < 525 GeV are excluded

Previous: D0 (425/pb) M(SLQ)< 210 GeV

Assuming λ'_{333} =1 and chosen benchmark, RPV stops with mass < 455 GeV are excluded

Previous: CDF (322/pb) M(stop)< 153 GeV

Top SU(5) vector leptoquakrs with mass < 760 GeV are excluded

→ First limits on model *arXiv:1206.0409*

limit on RPV coupling

- Top squarks with mass below 240 (340) GeV are excluded
 - for all values of $\lambda'_{333} > O(10^{-7})$ for $M_2 = 250$ (1000) GeV
- \rightarrow First direct limit on λ'_{333}

Conclusion

- Search for new phenomena in final states with τ leptons and b jets
 - → Search for Higgs boson within minimal SUSY model
 - No excess is observed in di-τ mass spectrum
 - The most stringent limits are set in MSSM parameter space for mh-max benchmark scenario
 - → Search for pair production of leptoquarks or top squarks
 - Observed distribution of S_T agrees with the SM background prediction
 - Limits are set on third-generation leptoquark pair production as well as on top squark pair production decaying within RPV scenario for a given parameter set
 - First direct bounds are obtained on RPV coupling between top squark, τ lepton, and b quark
 - Limits are set top-SU(5) model vector leptoquarks

Outlook

- No hits of new physics so far
 - Efforts are still on-going to utilize all available data at 7 and 8 TeV and improve analyses strategy

 Significant improvement is expected for high mass searches with higher CME run of LHC

BACKUP

Tau energy scale

• Energy scale was estimated data and MC simulation

Conservative 3% uncertainty on tau energy scale

Object ID – b jets

Multiple methods are used to measure b-tagging efficiency in multijet events

- Using relative p_T or 3D impact parameter of muons in jets to discriminate b-jets from light or c-jets
- Using lifetime tagger method on both muon-jet and inclusive jet sample

Different measurements are combined based on weighted mean of the scale factors for jets with $30 \text{ GeV} < p_T < 670 \text{ GeV}$

Object ID – b jets

Multiple methods are used to measure b-tagging efficiency in ttbar events

lepton+jets and dilepton+jets decays 3500

- b-enriched jet sample
- Flavor tag consistency method
- PL ratio
- Flavor tag matching method

- Combined scale factor is derived as a weighted mean of scale factors from two best measurements from two samples yielding ~4% uncertainty
- Scale factor as function of discriminator value is available for MVA methods

b-tagging @ high pT

- Performance of b-tagging algorithms are optimized for medium pT range
 - At high and low pT both mistag rate goes up and efficiency degrades

Optimization for jet-track association

- Selection for tracks assocated to jets is optimized for high pT jets – described in AN-12-019
 - Both pT(trk) and Δ R can be used to improve performance

500pT(jet)

Improvements seen for physics definition of flavor

120

Performance

TC-taggers

Mistag rate = 1%		
	ϵ_{TCHE}	ϵ_{TCHP}
Default	32%	40%
Modified	41%	44%
Improvement	28%	10%
Mistag rate = 0.1%		
	ϵ_{TCHE}	ϵ_{TCHP}
Default	0.9%	5%
Modified	2.5%	14%
Improvement	178%	133%

BACKUP for Higgs->ττ

Implications of 125 GeV boson

- The main parameters in MSSM are
 - at tree level: M_A and tan β
 - at loop level: M_{SUSY} soft-SUSY-breaking squark mass of the third generation and X_t stop mixing parameter

 $M_{susy} = 1TeV$ $\mathbf{m}_{h,\max} | X_t = 2TeV$ $M_2 = 200 GeV$ $\mu = 200 GeV$

 $M_3 = 800 GeV$

All scenarios with some degree of mixing one can get $M_h \sim 125$ GeV

LHC limits from SM Higgs search: Constraints on $|X_t|$ vs. M_{stop} of $123~{
m GeV} \lesssim M_{
m H_{SM}} \lesssim 127~{
m GeV}$ S. Heinemeyer, et al. arXiv:1112.3026

Modified m_{h,max} scenario X_t ~1300 GeV

Search sensitivity

• Limits for different category/channel

Cross section of gg fusion

• Cross section of pseudo-scalar MSSM Higgs boson A in mhmax scenario

4FS vs 5FS

• Comparison of the NLO 4FS and NNLO 5FS for the production of pseud-scalar Higgs boson in association with b quarks in mh-max scenario

Theory uncertainty on $\sigma(gg \rightarrow bb\Phi)$

MSSM vs SM cross section

 Production cross section for the SM Higgs boson and the pseudo-scalar MSSM Higgs boson A

Effect of b-loop on acceptance of $gg \rightarrow \Phi$ signal

arXiv:1201.3084 [hep-ph]

J. Alwall, Q. Li, and F. Maltoni, Matched predictions for Higgs production via heavy-quark loops in the SM and beyond, arXiv:1110.1728 [hep-ph].

Table 41: The $e+\tau_h$ acceptances before and after re-weighting to correct for b-loop contribution.

$M_{ m H}$ [GeV]	Acceptance	Acceptance	Correction factor
	$\textbf{PYTHIA} \ gg \to H$	re-weighted for b-loop	
140	0.072 ± 0.001	0.070 ± 0.001	0.97 ± 0.01
400	0.149 ± 0.001	0.152 ± 0.001	1.02 ± 0.02

For inclusive selection acceptance changes by 3%

Theory Uncertainties on $\sigma(pp \rightarrow bb\Phi)$

Effect of b-loop on acceptance of gg → H signal

CMS promose uniqui preduzo

arXiv:1201.3084 [hep-ph]

J. Alwall, Q. Li, and F. Maltoni, Matched predictions for Higgs production via heavy-quark loops in the SM and beyond, arXiv:1110.1728 [hep-ph].

Table 41: The $e+\tau_h$ acceptances before and after re-weighting to correct for b-loop contribution.

M _H [GeV]	Acceptance	Acceptance	Correction factor
	$\textbf{PYTHIA} \ gg \to H$	re-weighted for b-loop	
140	0.072 ± 0.001	0.070 ± 0.001	0.97 ± 0.01
400	0.149 ± 0.001	0.152 ± 0.001	1.02 ± 0.02

For inclusive selection acceptance changes by 3%

Backgrounds – Wjets

Transverse mass from Wjets and Wbb sample

To mT<20 GeV

	Extrap. Factor stat unc.
W + light jet	0.13±0.01
W + b jet	0.15±0.03
W + jet	0.13±0.01

BACKUP for LQ/Stop

$W/Z + jets S_T Shapes$

• Not enough statistics in MC after the main selection to get the W+jet and

Z+jet S_T shapes with precision

- Measure weight in independent sample
 - Z+1 jet events
- S_T distr. is obtained by applying weights on control sample
 - At least two jets, no-btagging required

Validate procedure on anti-isolated control sample

• No overlap with main sample

• No overlap with sample used to compute weights

Systematic uncertainty on ST shape determination

- Parameterize S_T shape and compute $\pm 1\sigma$ variation of the fit taking into account errors on the fitting parameters
 - Novosibirsk function Gaussian with exponential tail
 - Three parameters: mean, sigma, tail parameter

$$P(x) = e^{-0.5(\ln q_y)^2/\Lambda^2 + \Lambda^2}$$
with $q_y = 1 + \Lambda(x - x_0)/\sigma \times \frac{\sinh(\Lambda\sqrt{\ln 4})}{\Lambda\sqrt{\ln 4}}$

- Validate fitting function on control sample
 - Relaxing btagging requirement
 - Good agreement between data and MC

Data-MC fit comparison

- Very good agreement between data and MC fits
 - Red data
 - Blue MC
- For independent sample the function predicts the tail well
- Difference between data and MC at the tail is small

Fitting before M(tau,b) cut

- Obtain fitting parameters as a function of tau p_T
 - Extrapolated parameters for tau $p_T > 50$ GeV

Tau $p_T > 50 \text{ GeV}$

- Blue function -- the one fitted on the sample
- Red dashed function -- the one obtained by extrapolating the parameters

Conclusion:

- * Difference between shapes (red and blue) is very small and can be neglected
- * Parameters varied within uncertainties yields to shape systematic uncertainty on W/Z+jets

Fitting after final selection

- Nominal distribution and $\pm 1\sigma$ variation of fit parameters for systematic uncertainties
 - Effect of these uncertainties is small

RPV interactions

$$W = \frac{1}{2}\lambda_{ijk} L_i L_j E_k^c + \lambda'_{ijk} L_i Q_j D_k^c + \frac{1}{2}\lambda''_{ijk} U_i^c D_j^c D_k^c$$

L = left-handed lepton/neutrino

E = right-handed lepton

Q = left-handed quark

U, *D* = right-handed quark

i, j, k = generation indices

UDD

 \tilde{q}

LQD

 $\tilde{q} \longrightarrow \begin{cases}
\ell \text{ or } \nu \\
q
\end{cases}$

 $\tilde{\ell}$ or $\tilde{\nu}$

LLE

$$\tilde{\nu}$$

LQ vs stop kinematics I

First and second b quark p_T

LQ vs stop kinematics II

Lepton pT and ST

SLQ vs VLQ I

SLQ vs VLQ II

• ΔR and S_T

IP cut efficiency

• Impact parameter cut efficiency as a function of the RPV coupling λ'_{333} (RPV stop lifetime)

$$\tau = \frac{3.3.10^{-23}}{\lambda^2 \cos \theta^2 M_{\tilde{t}}}$$

limit on branching fraction

• Limit on $\beta = BR(LQ3 \rightarrow \tau b)$

